Users Online: 45

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
     
ORIGINAL ARTICLE
Year : 2022  |  Volume : 12  |  Issue : 2  |  Page : 39-45

Metacaspase Deletion Increases Carbonylated and Tyrosine-Phosphorylated Proteins associated with Protein Synthesis and Carbohydrate Metabolism in Saccharomyces cerevisiae


1 Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
2 Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
3 Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Seeb; Ageing and Dementia Research Group, Sultan Qaboos University, Seeb, Oman
4 Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD, USA
5 Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia

Correspondence Address:
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnpnd.ijnpnd_18_21

Rights and Permissions

Hydrogen peroxide (H2O2) is an oxidant which could induce posttranslational modifications of proteins (PTMPs) in cells. It is still unknown that carbonylated proteins (CPs) were accumulated in caspase-suppressed leukemia cells or caspase-deleted Saccharomyces cerevisiae (yeast). Hence, we aimed to identify CPs and elucidate the role of metacaspase in regulating PTMPs and identify/compare the differentially expressed PTMPs in Δyca1 mutant compared to wild type with/without H2O2 exposure by proteomics approach. We found that deletion of the metacaspase gene (MCG) in yeast resulted in accumulation of high amounts of PTMPs associated with protein synthesis and carbohydrate metabolism compared to H2O2, which suggests that MCG is involved in the regulation of PTMPs and it could protect yeast from oxidative stress.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1596    
    Printed136    
    Emailed0    
    PDF Downloaded252    
    Comments [Add]    

Recommend this journal