Users Online: 267

Home Print this page Email this page Small font sizeDefault font sizeIncrease font size

Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions | Subscribe | Contacts | Login 
Year : 2021  |  Volume : 11  |  Issue : 4  |  Page : 262-266

Statistical Models for Estimating Linear Growth Velocity: A Systematic Review

1 African Centre of Excellence in Data Science (ACE-DS), University of , Kigali; Centre for Infectious Disease Research in , Lusaka, Zambia, Rwanda
2 Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
3 5College of Science and Technology, University of Rwanda, Kigali, Rwanda
4 Aga Khan University Hospital, Karachi, Pakistan
5 Centre for Infectious Disease Research in Zambia, Lusaka; Department of Biostatistics, School of Public Health, University of Ghana, Legon Accra, Ghana, Zambia

Correspondence Address:
Obvious N Chilyabanyama
Centre for Infectious Disease Research in Zambia (CIDRZ), PO Box 34681, Lusaka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijnpnd.ijnpnd_6_21

Rights and Permissions

Poor linear growth among infants is still a global public health issue. Linear growth velocity has been variously suggested as a more robust measure for growth over the classical measure of attained height for age. In this study, we systematically reviewed available literature for models used in estimating linear growth velocity. We searched Medline, Embase, Cochrane methodology register, Joanna Briggs Institute EBP, through the Ovid interface, and PubMed database to identify relevant articles that used statistical models to estimate linear growth velocity among infants. Longitudinal studies published in English were included. Two reviewers independently screened the titles and abstracts to identify potentially eligible studies. Any disagreements were discussed and resolved. Full-text articles were downloaded for all the studies that met the eligibility criteria. We synthesized literature using the preferred reporting items for systematic review and meta-analyses guidelines for the most used statistical methods for modelling infant growth trajectories. A total of 301 articles were retrieved from the initial search. Fifty-six full-text articles were assessed for eligibility and 16 of which were included in the final review with a total of 303,940 infants, median sample size of 732 (interquartile range: 241–1683). Polynomial function models were the most used growth model. Three (18.8%) of the articles modelled the linear growth. Two (12.5%) articles used mixed-effects models and another two (12.5%) used the Jenss-Bayley growth models to model linear growth. Other models included residual growth model, two-stage multilevel linear spline model, joint multilevel linear spline model, and generalized least squares with random effects. We have identified linear mixed-effects models, polynomial growth models, and the Jenss-Bayley model as the used models for characterizing linear growth among infants. Linear mixed-effects model is appealing for its robustness even under violation of largely robust even to quite severe violations of model assumptions.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded186    
    Comments [Add]    

Recommend this journal