ORIGINAL ARTICLE |
|
Year : 2011 | Volume
: 1
| Issue : 2 | Page : 139-145 |
|
1-methyl 4 -phenyl 1,2,3,6-tetrahydropyridine is a potent neurotoxin: Gamma-tocopherol recuperate behavior, dopamine, and oxidative stress on Parkinsonic mice
Kalaivani Karunanithi1, Anandhan Annadurai1, Mohankumar Krishnamoorthy1, Preetham Elumalai2, Tamilarasan Manivasagam1
1 Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India 2 Department of Biochemistry, Regensberg University, Germany
Correspondence Address:
Tamilarasan Manivasagam Biotechnology, Annamalai University, Annamalai Nagar- 608 002, Tamil Nadu India
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/2231-0738.84204
|
|
Aim : The present study was designed to investigate the neuroprotective effect of gamma-tocopherol on MPTP induced Parkinsonic mice. Materials and Methods: Oral administration of γ-tocopherol (48 mg/kg BW) in C57BL/6 mice for seven days. Parkinson's disease was induced by four intraperitoneal injections (from 4th to 7th day) of MPTP (30 mg/kg BW). On the end of experiment (8th day), behavioral studies were performed to understand motor skill abnormalities and then animals were sacrificed to procure midbrain and striatum. Subsequently, homogenized and centrifuged to get postmitochondrial supernatant which was used to assay a) Neurochemical -- Dopamine, DOPAC, HVA b) Biochemical -- TBARS, GSH, GPx, SOD, and Catalase. Results: Pretreatment of γ-tocopherol (48 mg/kg BW) significantly attenuated the MPTP induced behavioral (rotarod performance, open field test, narrow beam walk test and hang test), neurochemical, biochemical alterations in mice suggesting their free-radical scavenging potential. Conclusions: Our results demonstrate that γ-tocopherol confers potent neuroprotection against MPTP-induced toxicity of dopaminergic neurons, and may become a potential therapeutic strategy for neurodegenerative disorder such as Parkinson's disease. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|